Towards Stochastic Recurrent Neural Control Policy

Tianhao Zhang
Sequential Monte Carlo variant of Generalized EM algorithm Abstract Experimental Evaluation
Training Objective: variational lower bound of data log-likelihood Goal: MLPs are popular control policies for, and achieve state-of-the- Implementation: We independently implemented harness3, based on
1(6) = log po(ulz) = log > po(u, hlz) :logIEthpe(u(’h};lx) art .fESU|tS in, many .ro.botics .taSkf'-. However, the feedforward Computation Graph Toolkit, that allows convenient construction of arbitrary
h q architecture of MLPs limits their ability to extend further than a structure of neural network. A highlight of our harness is that it supports layer
> Enoglog P22 00y “ () = £(0.0)) sophisticated reflexive agent. We !ntroduce. stochastic units Into the with mixed types of units, including standard fully-connected units, Bernoulli
q(h) | neural network control policies, with an ultimate goal of achieving a stochastic units, long-short-term-memory block, and com- mon non-
Approximate Distribution: the tighest choiceis ¢*(h) = p(h|u,) stochastic recurrent neural network. linearities.
£(q,0) = Elog 2w 2)po(u]z) Method: We derive a Sequential Monte Carlo variant of Generalized Synthetic Datasets: Here we review the capabilities of SFNN on 1D dataset
q(h) EM algorithm for learning stochastic recurrent neural policy.
= logpo(ulz) — Dz (g(h) || pe(hlu,z)) (4) gt | Right: optimal solution (conditional ™
EM Algorithm: Graphical Models Hﬂﬂm | average) of a deterministic network
-) - . s Hybrid Stochastic Feed-forward Network (SFNN): Shares same H, | Left: error bars representthe range
- . — —_ . 05
{ SIEP: q* max L = plhju,z) () structure with MLPs, except that some hidden units are replaced by HIW | of samples from the learnt stochastic
M-step: 0% =maxp L = maxs Q(6) (5b) Bernoulli stochastic neurons. In the extreme case. this becomes a mmﬂw]ﬂl | network -
. . o S; id Belief Network 72 73 | * Horizontal/vertical axis is inputs/outputs
Sequential Monte Carlo (E-step): importance sampling is needed IgMOoId BelieT NETWOrk. X T ek e oo e e S R S 0¥
ior distribution i Bernoulli units: P(hout =1 [hin) = o(hin) 3 2 Y L .
because the true post(g)nor distribution is hard to compute : e 8 o o 8 5 Quadrotor Control Task: cylindrical obstacle avoidance
) P hz uo: T, X0: - its: — —> — > - .
w(hg:)T) _ O.T(|i)OT 0:T) Recu.rrent Stoca§t.|c units: We can |0 O e O ” O o0 Data Generation:
p(hg.7 |xo:1) readily add additional dependency ||O 5 O™ O o . Total of 15 domized initial "
D20 w0) & p(hD D o xom) “ssed throueh time Ol 10O otal o randomizea Initial positions
_ Plhy” |0, uo t 10— 1 O T () P 5 ' “Tangetal roughly in front of the obstacle

p(h?zo) =5 p(h M) x0:)

* For each scenario, a trajectory optimization
algorithm (iLQG) is used to generate optimal
(time-variant Gaussian) control policy given

5 o The below algorithm summarizes the overall learning procedure of a
wr = Go 1_[1 Gt = wr—1Gr (7) hybrid stochastic recurrent neural control policy:
t=

The last equation suggests that the importance weights can be Algorithm 1 315 Generalized EM perfect state information (i.e. position, etc) * 3 3D view of the simulator
CompUted recu rS|Ve|y by IHpUt: tralnlng trajectories {(X(()n])ﬂ. u(()n:,)ﬂ Zu(()n%) ;?;:l’ ° RO”OUt each Opt|ma| pollcy 5 tlmes |n
(1) 1}, (@) hidden stochastic units for each step unrolled {hy};_, simulation and collect the raw observations »
ci=? (i "[Ros—y, ot Xo:t) network parameter 6, number of samples M : :
t— GRNG ’ ‘ ‘ (i.e. laser ranges) along the resulting
p(hy " [hyz 1, Xo:t) repeat _ . <od o
B (b8 uour. o) p(uou b, xou) {E-step) trajectories as our supervised training set typical training trajectories
p(hg), x0:)p(os i) 1, %0:) p(uo|hgly,Xo:t) for n = 1to N do Set-up: we trained MLP and SFNN on same training set with conflicting

examples which often arise in typical data collection process.
For SFNN, use M = 30 samples for gradient estimate. For both, apply weight
decay (5e-3) and allow objective to plateau with proper number of epochs.

; . for: =1to M do
p(uolho, zo)p(ur), Xo:t) [T5Z) p(ur|ho:r, Xo:r) (i) .
_ =1, hy’ ~ p(hi|ho, 1)
p(uo ko, zo)p(ut|hot—1,%0:¢) [I 25 P(ur[ho:r, X0:7) i _ o7 (@) ,
1 = p(hy’|ho, 1)

_ p(ut|h$), x0:e) plue|h§), xo.t) 8) wi = plu, NON)
p(uslho:t—1,%0:4) — LS p(uy|h§), x0.0) end for 0 Both have fully-connected layers of size 40 (inputs) ->
W= wi /3w 40 -> 20 -> 15 -> 4 (outputs); SFNN has additional one
where M is the total number of samples from g; for each ¢ 1 T Lag T Bernoulli node at each of the last two lavers \ /
and the last equation follows from a standard Monte Carlo: for ¢ = 2to 1" do YETS.
for ¢ = 1to M do Result: MLP control policy is permanently biased
p(UtlhO:t—l, xO:t) — Ehtwth(Ut|ht, hO:t—l, XO:t)]251) ~])(h():t|h();t_1, X():t) . . .
;o (d) towards dodging right and leads to frequent crashes,
By now we should have collected: I} = p(hy.; | ho—1,%0:¢) . .
| | | | i — o)) whereas SNN retains the variety and keeps a lower a
¢t 2 p(h”|hos-1,%04) 1 £ p(us/hi), x04) (9) en;’tﬂ; p(ut|Bots Xo: crash rate.
Gradient Asent (M-step): wy =wp/ >, w! Table 1. Comparison of stochastic and deterministic neural net- AbF’VE: SNN; Below: MLP
Q(6) = B, g~ log po(0:r, hovr|%o0:1) end for work control policies (numbers in parenthesis represent training ~ /Pic@I rollouts oflearnt policy
= T ~q :T'5 110: :
MO end for epochs
~ Y @i [logpe(uo:r by, xo:) + log pe(hz|xo.r)] {M-step}
i=1 fori = 1to M do METHOD %CRASH %LEFT /
i i ¢ T - i S TARNE
= i (ﬁ <) [ilog gi + log I] compute AQY = 5|37, logg; + loglj] using -
I\ 4 = standard back-propagation SNN(5) 32.0 22.9
SNN(10) 49.3 15.2
end for SNN(15) 333 113
M ~; 5) ’ e T . .
0Q i (ﬁ qi) 9, [zT:log g +log] (10) sga_update(0, Zizl u_.rTAQ() {any stochastic gradi- MLP(15) 48 0 0
00 =\ > ql/ 00— ent ascent algorithm such as ADAM or RMSProp}

until convergence

