
* typical training trajectories

* a 3D viewof the simulator

Towards	
  Stochastic	
  Recurrent	
  Neural	
  Control	
  Policy
Tianhao	
  Zhang

Sequential	
  Monte	
  Carlo	
  variant	
  of	
  Generalized	
  EM	
  algorithm
Training	
  Objective: variational lower	
  bound	
  of	
  data	
  log-­‐likelihood

Experimental	
  Evaluation
Implementation: We independently implemented harness3, based on
Computation Graph Toolkit, that allows convenient construction of arbitrary
structure of neural network. A highlight of our harness is that it supports layer
with mixed types of units, including standard fully-­‐connected units, Bernoulli
stochastic units, long-­‐short-­‐term-­‐memory block, and com-­‐ mon non-­‐
linearities.
SyntheticDatasets: Here we review the capabilities of SFNN on 1D dataset

Abstract
Goal: MLPs are popular control policies for, and achieve state-­‐of-­‐the-­‐
art results in, many robotics tasks. However, the feedforward
architecture of MLPs limits their ability to extend further than a
sophisticated reflexive agent. We introduce stochastic units into the
neural network control policies, with an ultimate goal of achieving a
stochastic recurrent neural network.
Method: We derive a Sequential Monte Carlo variant of Generalized
EM algorithm for learning stochastic recurrent neural policy.

Approximate	
  Distribution: the	
  tighest choice	
  is

EM	
  Algorithm:

Sequential	
  Monte	
  Carlo	
  (E-­‐step): importance	
  sampling	
  is	
  needed	
  
because	
  the	
  true	
  posterior	
  distribution	
  is	
  hard	
  to	
  compute

By	
  now	
  we	
  should	
  have	
  collected:

The	
  last	
  equation	
  suggests	
  that	
  the	
  importance	
  weights	
  can	
  be	
  
computed	
  recursively	
  by:

Gradient	
  Asent (M-­‐step):	
  

Graphical	
  Models
Hybrid Stochastic Feed-­‐forward Network (SFNN): Shares same
structure with MLPs, except that some hidden units are replaced by
Bernoulli stochastic neurons. In the extreme case, this becomes a
Sigmoid Belief Network.
Bernoulli units:

Recurrent Stocastic units: We can
readily add additional dependency
passed through time. * Tang et al

The below algorithm summarizes the overall learning procedure of a
hybrid stochastic recurrentneural control policy:

Right:	
  optimal	
  solution	
  (conditional	
  
average)	
  of	
  a	
  deterministic	
  network
Left:	
  error	
  bars	
  represent	
  the	
  range	
  
of	
  samples	
  from	
  the	
  learnt	
  stochastic	
  
network
*	
  Horizontal/vertical	
  axis	
  is	
  inputs/outputs

Quadrotor Control Task: cylindrical obstacle avoidance
Data Generation:
• Total of 15 randomized initial positions

roughly in front of the obstacle
• For each scenario, a trajectory optimization

algorithm (iLQG) is used to generate optimal
(time-­‐variant Gaussian) control policy given
perfect state information (i.e. position, etc)

• Rollout each optimal policy 5 times in
simulation and collect the raw observations
(i.e. laser ranges) along the resulting
trajectories as our supervised training set

Set-­‐up: we trained MLP and SFNN on same training set with conflicting
examples which often arise in typical data collection process.
For SFNN, use M = 30 samples for gradient estimate. For both, apply weight
decay (5e-­‐3) and allow objective to plateau with proper number of epochs.

Above:	
  SNN;	
  Below:	
  MLP
Typical	
  rollouts	
  of	
  learnt	
  policy

Both have fully-­‐connected layers of size 40 (inputs) -­‐>
40 -­‐> 20 -­‐> 15 -­‐> 4 (outputs); SFNN has additional one
Bernoulli node at each of the last two layers.

* Neal et al

Result: MLP control policy is permanently biased
towards dodging right and leads to frequent crashes,
whereas SNN retains the variety and keeps a lower
crash rate.


