
* typical training trajectories

* a 3D viewof the simulator

Towards	  Stochastic	  Recurrent	  Neural	  Control	  Policy
Tianhao	  Zhang

Sequential	  Monte	  Carlo	  variant	  of	  Generalized	  EM	  algorithm
Training	  Objective: variational lower	  bound	  of	  data	  log-‐likelihood

Experimental	  Evaluation
Implementation: We independently implemented harness3, based on
Computation Graph Toolkit, that allows convenient construction of arbitrary
structure of neural network. A highlight of our harness is that it supports layer
with mixed types of units, including standard fully-‐connected units, Bernoulli
stochastic units, long-‐short-‐term-‐memory block, and com-‐ mon non-‐
linearities.
SyntheticDatasets: Here we review the capabilities of SFNN on 1D dataset

Abstract
Goal: MLPs are popular control policies for, and achieve state-‐of-‐the-‐
art results in, many robotics tasks. However, the feedforward
architecture of MLPs limits their ability to extend further than a
sophisticated reflexive agent. We introduce stochastic units into the
neural network control policies, with an ultimate goal of achieving a
stochastic recurrent neural network.
Method: We derive a Sequential Monte Carlo variant of Generalized
EM algorithm for learning stochastic recurrent neural policy.

Approximate	  Distribution: the	  tighest choice	  is

EM	  Algorithm:

Sequential	  Monte	  Carlo	  (E-‐step): importance	  sampling	  is	  needed	  
because	  the	  true	  posterior	  distribution	  is	  hard	  to	  compute

By	  now	  we	  should	  have	  collected:

The	  last	  equation	  suggests	  that	  the	  importance	  weights	  can	  be	  
computed	  recursively	  by:

Gradient	  Asent (M-‐step):	  

Graphical	  Models
Hybrid Stochastic Feed-‐forward Network (SFNN): Shares same
structure with MLPs, except that some hidden units are replaced by
Bernoulli stochastic neurons. In the extreme case, this becomes a
Sigmoid Belief Network.
Bernoulli units:

Recurrent Stocastic units: We can
readily add additional dependency
passed through time. * Tang et al

The below algorithm summarizes the overall learning procedure of a
hybrid stochastic recurrentneural control policy:

Right:	  optimal	  solution	  (conditional	  
average)	  of	  a	  deterministic	  network
Left:	  error	  bars	  represent	  the	  range	  
of	  samples	  from	  the	  learnt	  stochastic	  
network
*	  Horizontal/vertical	  axis	  is	  inputs/outputs

Quadrotor Control Task: cylindrical obstacle avoidance
Data Generation:
• Total of 15 randomized initial positions

roughly in front of the obstacle
• For each scenario, a trajectory optimization

algorithm (iLQG) is used to generate optimal
(time-‐variant Gaussian) control policy given
perfect state information (i.e. position, etc)

• Rollout each optimal policy 5 times in
simulation and collect the raw observations
(i.e. laser ranges) along the resulting
trajectories as our supervised training set

Set-‐up: we trained MLP and SFNN on same training set with conflicting
examples which often arise in typical data collection process.
For SFNN, use M = 30 samples for gradient estimate. For both, apply weight
decay (5e-‐3) and allow objective to plateau with proper number of epochs.

Above:	  SNN;	  Below:	  MLP
Typical	  rollouts	  of	  learnt	  policy

Both have fully-‐connected layers of size 40 (inputs) -‐>
40 -‐> 20 -‐> 15 -‐> 4 (outputs); SFNN has additional one
Bernoulli node at each of the last two layers.

* Neal et al

Result: MLP control policy is permanently biased
towards dodging right and leads to frequent crashes,
whereas SNN retains the variety and keeps a lower
crash rate.


