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Motivation

* Enable autonomous aerial vehicles (AAVs)
to navigate complex, unstructured environments




Challenges

* Complex, unstructured environments
* no explicit state estimation

* Use raw observations from onboard sensors
* high dimensionality and non-linearity

* Real-time evaluation at test time
* computationally efficient

e Robust to model errors and environment

disturbances
* flying systems are prone to catastrophic failures

—— Guided Policy Search *

—— Model Predictive Control

—_—

* S. Levine & P. Abbeel. "Learning neural network policies with guided policy search under unknown dynamics." NIPS. 2014.

S. Levine et al. "End-to-end training of deep visuomotor policies." JMLR. 2015.



Approach: MPC-GPS
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Approach: MPC-GPS (cont.)

* Training:
* use instrumented setup to obtain
full state information x
* MPC uses x to generate trajectories
* Record observations o
* Policy is trained to map from o to u

* Test:
* No need for instrumented setup
 Policy runs in closed loop
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Experiment Overview

Hallway Cylinder

Training
Environments

* no model error e 0.05kg mass error
Model Errors .
* 8% rotor bias e perturbed model params



Experimental Evaluation

Cylinder - 0.05kg mass error

Baseline MPC-GPS

MPC-guided policy search (our method)




Experimental Evaluation (cont.)

MPC-guided policy search (our method)




Experimental Evaluation (cont.)




Thank you!





