Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search

Tianhao Zhang, Gregory Kahn, Sergey Levine, Pieter Abbeel

Berkeley Artificial Intelligence Research Laboratory (BAIR)

Motivation

Enable autonomous aerial vehicles (AAVs)
to navigate complex, unstructured environments

Challenges

- Complex, unstructured environments
 - no explicit state estimation
- Use raw observations from onboard sensors
 - high dimensionality and non-linearity
- Real-time evaluation at test time
 - computationally efficient
- Robust to model errors and environment disturbances
 - flying systems are prone to catastrophic failures

Guided Policy Search *

Model Predictive Control

^{*} S. Levine & P. Abbeel. "Learning neural network policies with guided policy search under unknown dynamics." NIPS. 2014.

S. Levine et al. "End-to-end training of deep visuomotor policies." JMLR. 2015.

Approach: MPC-GPS

- Trajectory optimization
- Supervised learning
- Policy agreement
- MPC-GPS
 - Substitute offline trajectory optimization for online MPC

Approach: MPC-GPS (cont.)

• Training:

 use instrumented setup to obtain full state information x

MPC uses x to generate trajectories

- Record observations o
- Policy is trained to map from o to u

• Test:

- No need for instrumented setup
- Policy runs in closed loop

Experiment Overview

Hallway

Training Environments

Model Errors

- no model error
- 8% rotor bias

Cylinder

- 0.05kg mass error
- perturbed model params

Experimental Evaluation

Cylinder - 0.05kg mass error

Baseline

MPC-GPS

Experimental Evaluation (cont.)

Experimental Evaluation (cont.)

Thank you!