Automatic Detection of Window Regions in Indoor Point Clouds Using R-CNN

Craig Hiller, David Zhang, Tianhao Zhang, Zihao Zhang
University of California Berkeley
<omitted> @ berkeley.edu

Abstract

In this paper, we propose an algorithm to automatically
identify window regions on exterior-facing building facades
in a colored 3D point cloud generated using data captured
from an ambulatory backpack sensor system outfitted with
multiple LiDAR sensors and cameras. Our work is based
on a R-CNN-inspired algorithm, on top on which we added
some filtering and preprocessing technique. We use MCG
for generating region proposals, pass the proposal to a con-
volution neural net, and train a random forest with the
output vectors. With our implementation, we are able to
achieve an F1 score of 89.79% and mAP of 96.64%.

1. Introduction

3D modeling of building interior is an important applica-
tion in the architecture and civil engineering industry. For
example, a tool called Energy Plus models and simulates
building energy efficiency [4]]. In order to model the energy
efficiency of a building, it’s important to accurately measure
the “window to wall ratio” of the exterior facades. In our
work, we use data collected by a human-operated backpack-
mounted system made of cameras and multi-modal sensors,
in order to detect exterior-facing window in the buildings.

Our project branches off of previous work done by
Zhang et al. [4] who used the same backpack system as we
do. As mentioned in their paper, the task of detecting win-
dows from colored 3D point clouds presents a twofold chal-
lenge. Firstly, we are limited by the amount of training data
available for structured prediction. Secondly, windows are
transparent and are inherently shapeless in 3D space. As a
result, conventional image feature descriptors lack discrim-
inative power in identifying windows due to the absence of
visual cues such as color and texture. Shape descriptors
developed for 3D point clouds are not also applicable [4].
However, our approaches differ substantially in the way we
address the aforementioned difficulties and how we lever-
age the multiple modalities of the data acquisition unit.

In Zhang et al’s work, they utilized three features to aid
in discriminating between windowed and walled regions.

Firstly, they used grayscale intensity values from the vi-
sual imaging modality to capture lighting differences be-
tween indoor and outdoor regions. Secondly, they measured
the proportion of laser-beam returns received by the LIDAR
scanner to exploit differences in infrared opaqueness (glass
tends to absorb infrared light). Finally, they used a heuris-
tic to construct an “occlusion proxy” feature by noting that
occluded regions are more likely to be wall than window

[4].

While the approach proposed by Zhang et al achieves
high accuracy and F score, their method is limited by some
on-site constraints. For example, the grayscale intensity and
laser beam reflection feature do not work if the blinds of the
window are down, or when the lighting outside the window
does not have a strong contrast with the indoor lighting. Our
approach attempts to utilize more visual information, which
is captured by the left and right camera of the backpack
during the data collection.

We applied the a similar approach to R-CNN[2]], with ad-
ditional processing and fine-tuning, we are able to achieve
an accuracy of over 90%. For each of the images, we gen-
erate region candidates, and then for each region proposal,
we pass it through a convolution neural net to generate a
feature vector.

This feature vector is then passed through a binary (win-
dow or not) classifier that was trained through a similar pro-
cess. We experimented different algorithms for classifica-
tion, more details about this will follow in later sections.
Since we use learnt feature from the convolution neural net
in our detection, our algorithm is more robust to different
conditions of indoor and outdoor lighting. Also, we train
our classifier with data points sampled from a variety of dis-
tributions(daytime and nighttime, blinds up and down etc.)
so we are able to detect windows sampled from different en-
vironments, adding robustness to our algorithm. The final
improvements to our algorithm come from a manual pre-
processing of some data in the image set we are classifying.
This ”human touch” allows us achieve even better results
with only a few minutes of human interaction.



region
candidate 9
generation

normal

Image filtering

CNN and
classifier

confidence
voting

thresholding
and output

Figure 1. pipeline

2. Algorithm Description
2.1. Ground Truthing

Since there are no substantial datasets of windows with
their precise regions labeled, we need to generate our own
labels for existing images. Because we needed both images
to test and train on, we manually labeled approximately
1200 images from our Mulford Hall dataset, 400 images
from the Cory Hall dataset, as well as pulled images from
Google Images and captured around 40 pictures of windows
around the UC Berkeley campus. For each of the images,
our tool for hand-labeling generates a binary mask where
the mask has value one where there’s window and zero oth-
erwise. These images and masks are used as the basis of
the experiments used in the rest of the paper. An example is
shown in Figure 3.

2.2. Region Candidate Generation

We initially started with selective search to generate can-
didate regions, but we found that using multiscale combi-
natorial grouping (MCG) [1] gave us better proposals, at
the expense of more slightly more computation per image.
The output of this stage gives us a set of region proposals
(roughly 2000 per image) along with their respective bound-
ing boxes. Each region proposal is extracted “without con-
text”, i.e. we exclude the background image content outside
of the proposal. These regions are then used for feature ex-
traction.

2.3. Feature Extraction

We use R-CNN to extract a 4096-dimensional feature
vector from each region proposal generated by MCG. The
CNN used is a Caffe implementation of AlexNet [3] except
the order of normalization and pooling layers is swapped,
and training was performed without dataset augmentation.
Each region proposal is forward propagated through five
convolutional layers and two fully connected layers to gen-
erate a feature vector. That is, we take the output of the final
hidden layer (fc7) of the network as our feature vector.

The input to the CNN is a 256 x 256 RGB image, so
we simply scale the input via interpolation to fit these di-
mensions. Alternative methods include “tightest box with
context” and anisotropic scaling methods, as discussed in
Appedix A of [2].

2.4. Classification

We experimented with using a linear SVM and a random
forest to perform binary classification. We used our ground
truth dataset to cross-validate each method using grid search
to determine the optimal hyper-parameters for each model.

A random forest consisting of 100 trees gave us the best
results with 91.7% validation accuracy. With an SVM, we
were able to achieve comparable performance (90.1% val-
idation accuracy) after scaling our features to have zero
mean and unit variance. In addition to offering better val-
idation accuracy, using random forests also enabled us to
reduce the amount of time spent on training through paral-
lelization. For 100 trees, training took less than 13 seconds
when parallelized across 18 cores of an Intel Xeon CPU
3.1GHz CPU. Although the SVM would probably scale bet-
ter at test time for very large datasets, we choose to use a
random forest for its slightly better performance and ease
of integration with our system.

2.5. Evaluation

At test time for each of the test images, we follow the
pipeline that we described earlier in this section. We gener-
ate region candidate proposals, apply a filter to the proposal
using surface normal information generated from the laser
data collected by the backpack system. More detail about
the normal map will be specified below. After the filtering,
we pass the region candidates through the convolution neu-
ral net and get the feature vector, run all the vectors through
our classifier. Once we have all the positive candidate from
the classifier, we perform a confidence voting on a binary
mask, more details below. In the end, we threshold the
mask to get the window area. Figure 1 is a visualization
of our pipeline.

2.5.1 Normal Map filtering

With the normal map filtering, we exploit the fact that win-
dows are located on the walls inside a building, we elimi-
nate the region candidates that has a surface normal facing
down or facing up. The normal map we generate contains
the normal unit vector of the surface at each pixel, so we can
use the information to help us determine whether a region
candidate is valid or not. After the filtering, we are able to
reduce the run-time of the CNN and classification stage. We



are able able to reject candidates that are on the ceilings and
floor, but could be confused with windows. In Figure 2, we
show the region candidates generated without filtering, the
corresponding normal map, and the region candidates after
filtering.

2.5.2 Confidence Voting

Once we have the positive candidates returned from the
classifier, we want to generate a binary mask for denoting
the regions that our algorithm would classify as windows.

We experienced with an naive algorithm such that for
each pixel, if the pixel is contained in any positive re-
gion candidate mask, we classify that pixel as window
area. However, although we have an over 90 percent cross-
validation accuracy for our classifier, false positives have
significant impact on the outcome of the naive algorithm. A
example is shown in Figure 3.

To overcome this problem, we implemented a voting
based algorithm. We begin with an all-zero gray-scale
mask, and then for each region candidate mask, we add
some confidence score to the gray-scale mask. Since win-
dow is a continuous-shaped object, we penalize the region
proposals with large bounding boxes but small masks.

For each region candidate

confidence score = ¢ — 1 (D)

where r is the proportion of the bounding box area to mask
area.

Since the result gray-scale image should be invariant to
the number of positive bounding boxes, we normalize the
gray-scale mask to [0, 1].

After we apply the confidence voting, the resulting gray-
scale map has much better accuracy. A comparison of the
naive result and the confidence voting result is shown in
figure 3 below.

2.6. Human Augmented Dataset

Using just images collected from Google Images and
taken around campus, the window regions we detect tend
to miss the blinds. This is in part due to a lack of curtained
or blinded image data in that training dataset, and when we
enter a new environment, we may encounter a type of win-
dow covering we may have not seen before. Having a hu-
man label a small fraction of randomly chosen images from
the images we are trying to classify gives our algorithm a
stronger sense of the window and blind types in the over-
all dataset. This relies on the assumption that in a given
building a general style is preserved and randomly picking
images should cover most of the variation. In our experi-
ment we used 40 images, which took less than ten minutes
to classify. The improvement of adding in this new data is
shown in Figure 3.

Figure 3. test image with ground truth shaded (upper left), non-
human augmented classification with confidence voting (upper
right) human-augmented with no confidence voting result (lower
left) and the confidence voting result with human augmented
dataset (bottom right)

3. Experiment Results

We ran our software on the dataset that we collected us-
ing the backpack on the third floor of Cory Hall, The test

0,33 T T T
0,08 Feee
0,9

Precision

E e s s D e e
0,92

- ‘ ; ‘ i i ! .
0.1 0.2 0.2 0.4 0.5 ok 0.7 0.8 ]

Recall

Figure 4. precision recall curve



Figure 2. region candidates generated without filtering, the correspondent normal map, and the region candidates after filtering

set contains 400 images with hand labeled ground truth.
We achieved an Fj score of 89.79% (P:91.27, R:88.35) and
mAP of 96.64% compared to the 85.5 F score and 94.2%
mAP achieved by the method proposed by Zhang et al [4].

The method used by Zhang et al. had difficulty detecting
windows occluded by blinds, curtains, and other objects.
We found that our method was able to successfully capture
these regions, which we attribute to our ability to exploit the
visual imaging modality of our sensor system.

4. Conclusion and Future Work

We believe that our R-CNN approach gives us results
competitive with those of Zhang et al. Our method has also
has a lot of potential for future refinement. In particular, we
did not perform any fine-tuning of our CNN with domain
specific data as in [2]. We also believe that a larger ground
truth dataset would allow our method to generalize better.
Another way to improve the result of the window detector
would be augmenting our algorithm with the some of the
work that Zhang et al. done, and make our result onto a 3D
point cloud model to calculate the "window to wall ratio”.

For inspirations outside of this task, we could also gen-
eralize the concept of confidence voting and apply it to gen-
eral object recognition.

References

[1] P. Arbelaez,J. Pont-Tuset, J. Barron, F. Marques, and J. Malik.
Multiscale combinatorial grouping. In Computer Vision and
Pattern Recognition, 2014.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Computer Vision and Pattern Recognition

(3]

(4]

(CVPR), 2014 IEEE Conference on, pages 580-587. IEEE,
2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages
1097-1105. Curran Associates, Inc., 2012.

R. Zhang and A. Zakhor. Automatic identification of window
regions on indoor point clouds using lidar and cameras. In
Applications of Computer Vision (WACV), 2014 IEEE Winter
Conference on, pages 107-114. IEEE, 2014.



